The Language Application Grid and Galaxy

Nancy Ide, Keith Suderman
Vassar College

James Pustejovsky, Marc Verhagen
Brandeis University

Christopher Cieri
Linguistic Data Consortium

Eric Nyberg
Carnegie-Mellon University
The LAPPS Grid

• Framework for development of Natural Language Processing (NLP) applications
 – Information extraction/Question answering
 • Google search, mining information in unstructured textual data
 – Machine translation
 – Speech recognition
 – Sentiment analysis
 • “What is the current attitude toward Trump on Twitter?”
 – … and many more
LAPPS Galaxy Interface

http://galaxyproject.org

• The LAPPS Grid recently adopted the GALAXY workflow engine as a front end for construction of pipelines etc.
What we have in common

- Processing large amounts of (mostly text) data
- Data needs to be run through a pipeline of processors
 - pipelines are application dependent
 - Searching for patterns
- Processors in the pipeline may not have been designed to work together.
What is different

• Data sets
 – Genomes vs millions of small texts

• Data
 – You have genes, proteins, etc. (ACGT)
 – We have Twitter and Emoji
 • The OED added 2,000 new entries in the June 2016 update
 – Most of our processors are web services
 • The network is the bottleneck
Pipeline architecture for loosely-coupled linguistic analyses

1. **Text**
2. **Split sentences**
3. **Split words (tokenize)**
4. **Tag words with part of speech**
5. **Parse for syntactic structure**
6. **Semantic analysis**
7. **Detect sentiment**
8. **Extract entities**
9. **Extract relations**
10. **Find relevant documents**
11. **Build model**
12. **Produce a summary**
13. **Produce translation**
14. **Co-reference detection**
The LAPPS Grid

- Provides **interoperable access** to
 - Wide array of NLP processing tools and components
 - Language resources such as mono- and multi-lingual corpora and lexicons
- Enables pipelining tools to create **custom NLP applications and “black box” composite services**
- Provides an **open advancement (OA) framework** for component- and application-based evaluation
- Actively pursuing creation of an **interoperable global network of grids and frameworks**
Interoperability

• LAPPS Interchange Format (LIF)
 – allows services to exchange information
 – Syntactic interoperability
 • handled by JSON-LD
 • enforced by the LIF JSON schema
 – Semantic interoperability
 • enhanced by using the Linked Data aspect of JSON-LD to link to the LAPPS Web Services Exchange Vocabulary

Not a problem for genomic research!
Current collaborations/projects

- **Federation of Service Grids**
 - LAPPS Grid, Language Grid (Kyoto University, Japan), NECTEC (Thailand), University of Indonesia, Xinjiang University (China), ELRA Grid
 - Access to all tools, applications, and resources on any grid through any portal

- **LAPPS/CLARIN**
 - CLARIN/WebLicht (Tubingen) and LINDAT/CLARIN (Prague)
 - Mellon Foundation proposal to create a trust network between LAPPS and CLARIN

- **OpenMinted**
 - Advisory board—work together on harmonization

- **LAPPS Grid used in**
 - DARPA LORELEI project for under-resourced languages
 - HathiTrust Research Center (HTRC) text mining project
 - Multi-day course for government analysts
 - Undergraduate and graduate Computational Linguistics courses at CMU, Brandeis, Vassar
 - IBM Watson
Replicability and Sharing

• The field of NLP research and development has been plagued by a chronic lack of replicability of results
 – A great deal of re-inventing of the wheel and wasted effort
 – Evaluation of results hampered when details of a study (including versions and parameters for data, software) are not included in papers

• The field of NLP is still hampered by a lack of widespread sharing of resources that are the basis of research results
Workflow construction

LAPPS provides interoperability among...

...GATE tools...

...Stanford tools...

...OpenNLP tools...

...others!
Online Visualization of LappsGrid

LappsGrid, Version 0.3.0, May 2015

Brat Display

1. Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state.

Tool Output

```json
{
  "views": [
    {
      "metadata": {
        "discriminator": "http://vocab.lappsgrid.org/ns/media/jsonld",
        "payload": {
          "@context": "http://vocab.lappsgrid.org/context-1.0.0.jsonld",
          "metadata": {},
          "text": {
            "@value": "Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state."
          },
          "views": [
            "metadata": {
              "contains": {
                "http://vocab.lappsgrid.org/DependencyStructure": {
                  "producer": ""}
              }
            }
          ]
        }
      }
    }
  ]
}
```
Evaluation in LAPPS/Galaxy

- CMU has implemented services for state-of-the-art Open Advancement techniques
- Enables rapid identification of
 - frequent error categories within modules and documents
 - which module(s) and error type(s) have the greatest impact on overall performance
- Used in the development of IBM’s Watson to achieve steady performance gains over the four years of its development
Open Advancement in a Nutshell

• Analyzes results in/from alternative pipelines

• Can be comparison to gold standard, or comparison to another pipeline or pipelines
• Potentially any number of pipelines can be compared
 – CMU working on methods for finding an optimal solution among all multiple possible paths
Potential benefits of LAPPS/Galaxy collaboration

• Galaxy contains a huge number of tools for analyzing genomic and other biomedical data
• LAPPS includes tools to perform NLP analyses on unstructured textual data
• Combining LAPPS services with Galaxy tools can allow for analysis of data mined from the vast stores of biomedical literature (Biomed, PubMed, PLOS, etc.)

• BIONLP meets bio-analysis!
Machine Reasoning 101

• Literally dumber than a bag of light switches
 – Actually literally is a bag of light-switches

• Symbolic reasoning using *triples*
 – OWL/RDF expressed as triples

• *subject predicate object*

• The system doesn't actually understand anything
 – follows simple rules to manipulate symbols
Machine Reasoning 101

- Given a simple Knowledge Base
 - A P B
 - A Q C
 - D P B
 - D Q E
 - F P G
 - H P G
 - F Q A
 - H Q D
Machine Reasoning 101

• Can construct a simple query
 – \(?x \ P \ G\) (1)
 – \(?x \ Q \ ?y\) (2)
 – \(?y \ Q \ C\) (3)

• Solve for \(?x\) and \(?y\)
 – Two triples match (1)
 – \(F \ P \ G \ (x=F)\)
 – \(H \ P \ G \ (x=H)\)
Machine Reasoning 101

• Given $x=F$ or $x=H$ solve $?x \lor ?y$
 – $F \lor A$ ($x=F$, $y=A$)
 – $H \lor D$ ($x=H$, $y=D$)

• Given $y=A$ or $y=D$ solve $?y \lor C$

• One triple matches: $A \lor C$
 – $x=F$ and $y=A$

• If unable to match any triple the answer is False (no)
Machine Reasoning 101

- Human readable knowledge base
 - Toronto is-a City
 - Toronto is-in Canada
 - New-York is-a City
 - New-York is-in USA
 - Pearson is-a Airport
 - LaGuardia is-a Airport
 - Pearson is-in Toronto
 - LaGuardia is-in New-York
Machine Reasoning 101

• Find all the airports in Canada
 – ?x is-a Airport
 – ?x is-in ?city
 – ?city is-in Canada

• Supporting facts (triples)
 – Pearson is-a Airport
 – Pearson is-in Toronto
 – Toronto in-in Canada
Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state. GTP-bound ras binds to the raf protein kinase. This binding of raf to ras has the effect of activating the raf kinase and localizing the raf kinase to the cell membrane. Activated raf now phosphorylates and activates the Mek1 kinase. The Mek1 kinase then phosphorylates the ERK kinase on both threonine and tyrosine residues which activate ERK kinase activity. The phosphorylated ERK protein then translocates to the nucleus where it regulates gene expression in part by phosphorylating the Elk1 transcription factor. Phospho-Elk then upregulates the gene expression of target genes such as the proto-oncogene c-fos. The entire signaling cascade is terminated by the intrinsic GTPase activity of ras which hydrolyzes the bound GTP into GTP, thus returning ras to the GDP bound state where it releases bound raf. The GTPase activity of ras is accelerated by interaction with another protein called GAP. The oncogenic rasv12 mutant has diminished GTPase activity and therefore stays in the active GTP bound state constitutively. Deletion of GAP or the related NF1 genes will also enhance ras activity by slowing the rate of ras-GTP hydrolysis.
Information Extraction

- Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state.
Binding to **GTP causes** a **conformational change** of the **ras protein** that puts **Ras** into the active state.
Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state.
GTP-bound ras binds to the raf protein kinase.

Model

GTP \text{binds-to} \text{Ras}

Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state.
GTP-bound ras binds to the raf protein kinase.

Binding to GTP causes a conformational change of the ras protein that puts Ras into the active state.

GTP-bound ras binds to the raf protein kinase.
Potential

• Feed model /extracted information to tools in Galaxy for analysis/visualization

• The LAPPS Grid team is very interested in collaborations to explore and develop such capabilities!
Potential

• Siri, which coding exon has the highest number of single nucleotide polymorphisms on chromosome 22?
• If you ask Siri or Google this question you get the Galaxy 101 Tutorial page.
• Wouldn't it be nice to get the Galaxy pipeline that answered the question?
 – Or better, just the output from the pipeline
Parse the Question

Which coding exons have the highest number of single nucleotide polymorphisms on chromosome 22
Parse the Question

- Predicate: have
- Subject: coding exon
- Object: number of
 - SNP on chromosome 22

- Plan steps to answer question
 - data required
 - processing steps required
Answer the Question

• Data required
 – Coding Exons
 – Single Nucleotide Polymorphisms
 – How do we know where to find this data?

• Steps required
 – Join exons with SNP
 – Group by column 4 (how do we know this?)
 – Count SNP per exon
 – Sort and return top five.
Thank You