Trading Derivatives on Hyperledger

Siriwat Kasamwattanarote, Thierry Gibralta, Vsevolod Yugov, Shibo Lin
Hideaki Takei, Fernando Vazquez

LinuxCon + ContainerCon Japan 2016
15 July 2016
People

• SBI BITS (Better IT Solution)
• We’re building a next generation trading platforms

Fernando Vazquez
Siriwat Kasamwattanarote
Thierry Gibralta
Vsevolod Yugov
Shibo Lin
Hideaki Takei
Agenda

• What are we doing?
 • Trading derivatives
 • Hyperledger with container technology.
• Our design
• Performance evaluation
• Next challenges
• Key takeaways
A little more about us
Trading Derivatives

• What are derivatives?
 • Derivatives are securities linked to the other securities.
 • E.g. options, futures, and swaps.

• In case of an option
 • **Option** created when
 • Client **sells** their Put/Call option and other client **buys** the available Put/Call option.
 • Fee is called **premium**.
 • **Transaction** happen when
 • The option is **created**.
 • Existing option is **bought/sold/transferred**.
 • Exercising
 • At the **maturity time**
 • **Premium < Payout = Profit**
Trading Derivatives (2)

- Traditional platform

Problems:

- Transaction fee (not cheap as it could be)
- Operating expenses (OPEX)
- Centralized database / system (in-house maintenance)
The new approach
Blockchain

• A chain of blocks.
• Blockchain is a framework.
• A block may contain code as a smart contract.

• Ideal smart contract examples
 • Car insurance activates only when driving.
 • Money is transferred from A to B at 11:00 AM 15 July 2016 JST.

• The contract triggers automatically.
 • When a contract meets its true conditions.
Hyperledger

• A blockchain framework.
• Open standard/source.
• Customizable
 • Smart contract
 • Namely, *chaincode*.
 • Consensus plugins
 • Data payload
• Community driven.
• Written in Go.
• Heavily depends on the container technology.

Ref: https://www.hyperledger.org
Container

- Docker is a kind of containerization platform.
- No guest OS.
- Only bin/lib/app.
- We all know :)

Ref: https://www.docker.com
• Becomes a **fully distributed** blockchain framework.
• Motivated by
 • Our benefits
 • Simplified back office (BO).
 • Shareable BO between holder.
 • Less operating expenses (OPEX).
 • De-centralized database.
 • Contributing a common ledger.
 • Increasing transaction volume.
 • Customer benefits
 • Lower fee
 • Expected benefits
 • High availability
 • Disaster recovery
Our design
Use case

• Aims for derivative trading platform
• Trust model
 • Trusted nodes
 • Know your customer (KYC) procedure (by law)
 • Private network
 • Permissioned blockchain
• Regulatory oversight
Consensus

- Hyperledger’s default consensus plugins:
 - Noops
 - Trusts everyone.
 - No integrity.
 - PBFT
 - Trusts majorities
 - Partially recoverable.
 - What could be the optimal consensus algorithm for us?
Prototype

- Vanilla github.com/hyperledger/fabric
 - Two consensus plugins
 - No additional features

- Two simple chaincodes
 - Account management
 - Option trading

- Two type of nodes
 - **Validator** node – Validating the blocks.
 - **Non-validator** node – Providing the REST API service.

- Tested on the variety of architectures.
Hyperledger control center - HyperCC

• Currently
 • We use our specific node controller script.
 • Namely, **HyperCC**

• Built with
 • Docker CLI
 • SSH
 • ENV variables

• Parameters (port, volume, etc.)
 • Programmable
 • On-the-fly

• Available functions
 • **Start** – To create the nodes.
 • **Stop** – To terminate the nodes.
 • **Upgrade** – To rolling upgrade the nodes.
 • **SyncDB** – To recovery broken chains (experiment).
Deployment example

- 1 host machine
 - 1 Client
 - 1 Validator node
Deployment example (2)

- 1 host machine
 - 2 Clients
 - 1 Validator node
Deployment example (3)

• 1 host machine
 • 3 Clients
 • 3 Validator nodes
 • 1 Non-validator node
Deployment example (4)

- 4 machines
 - 3 Clients
 - 3 Validator nodes
 - 1 Non-validator nodes
 - each!
Performance evaluation
Test protocol and configurations

• What we measure?
 • **Throughput**, CPU, memory, storage, **latency** = $\text{Avg}(\text{Latency})$, and **discrepancy** = $\text{Avg}(\text{Diff}(\text{Discrepancy}))$

• How we send the transactions?
 • **REST API**

• What kind of transaction?
 • Randomly **transfer money** between users.

• Docker configuration
 • v. 1.11
 • --storage-driver=overlay

• Node configurations
 • Single VM, multiple VMs, multiple physical servers
 • Node size: 1/2/4/5/6/10/15/20
Overall result*

*Higher is better, comparing relatively to 1 VM.
Overall result* (2)

• Noops vs. PBFT

*Higher is better, comparing relatively to PBFT.
Throughput result in detail

- Estimated for *market hours (7 hours)*
 - Clients connect directly to *validator* node.

![Throughput graph]

Number of node defines number of machine.
Throughput result in detail (2)

- With non-validator node enabled

4 machines, 1 V node, 1 N nodes, 3 Clients, each
 - 4 machines, 3 V nodes, 1 N nodes, 3 Clients, each
 - 4 machines, 4 V nodes, 1 N nodes, 2 Clients, each
 - 4 machines, 3 V nodes, 1 N nodes, 1 Clients, each
 - 1 machine, 3 V nodes, 1 N node, 1 Client

V = validator
N = non-validator

72.58 M/24h.
Result summary

• Noops gives higher performance than PBFT.
• Higher throughput can be achieved with physical servers.
• Better to send transaction through a non-validator node.
Next challenges
Hyperledger side

1. Backup / Recovery
2. Something in between Noops and PBFT consensus.
 • Hybrid consensus?
3. Throttling rather than silent rejection.
4. ROOT discovery node fail?
5. Way to get transaction result on commit (transaction-specific event?).
6. Deprecated HostConfig in Docker 1.12
 • go-dockerclient still not support Docker 1.12.
 • Chaincode cannot be created.
7. Slow chaincode deployment.
8. Container not recycles automatically.
Docker side

1. Image is quite big
2. Make Docker image smaller
3. Might need runC/containerd
3 things to takeaway

• Hyperledger + Docker provides a powerful blockchain framework.

• Way to deploy a new chaincode without creating a new image.

• Hybrid consensus, fast, adjustable level of trust.
Talk with us

• Our leader:
 Fernando Luis Vázquez Cao
 fernando.vazquez@sbibits.com

• Me:
 Siriwat Kasamwattanarote
 siriwat.k@sbibits.com