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Why	is	it	challenging?
• Workload	often	show	diversity	in	terms	of	resource	
requirements,	priority	and	performance	objectives

• Some	of	the	workload	requires	resource	guarantees	
and	can	be	resource	hog	for	multi-tenant	environment.

• Datacenters	consists	of	machines	with	varied	capacities	
and	characteristics	(unless	you	are	on	cloud)

• Heterogeneous	workload	+	ephemeral	environment	
doesn't	make	it	easy

• Whatever	we	do,	remember	that	effective	workload	
management	remains	a	difficult	challenge
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Pre-requisite

• The	first	pre-requisite	is:	ISOLATION
• Isolation	can	be	achieved	through	containers.
• Isolation	of	process	space,	file-system,	
network	stack,	user	namespace,	disk	usage,	
disk	IO,	network	bandwidth	etc.	

• With	Mesos,	you	can	do	it	with	Mesos/Unified	
containerizer	or	Docker	containerizer
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Mesos	vs	Docker	containerizer
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Pros/Con
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Mesos/Unified containerizer Docker containerizer
Pros Pros
• fine	grained	operating	system	controls	e.g.,	cgroups &	

namespaces
• Standard way	of	orchestrating	docker	containers	

through	Mesos

• Already	provides	 custom	isolators	like	disk	 quota,	
network	performance	&	segregations

• Battle	tested.	It	just works	with	scale.

• Pick	and	choose	which isolators	you	want	while	
container	initialization

• Easily extensible	with	custom	isolators	

Con Con
• Cannot leverage	additional	features	of	docker-engine

like	ps,	logs,	exec,	inspect	 etc.
• Need	to	maintain	docker-engine on	every	mesos	

agent.

• And	when	you	upgrade docker-engine,	 tasks	die

• Only provides	 CPU	and	Memory	isolations



Assumption
• Don’t	get	bogged	down	with	the	details	of	each
• Whatever	containerizer	you	choose,	trust	me	there	is	a	
lot	of	work	ahead

• Production	containerized	workload	isn’t	as	simple	as	
spinning	up	a	container	and	you	are	over	with

• And	the	problem	is	if	you	have	sold	the	Mesos	idea	too	
much	in	your	company,	they	will	come	haunt	you	back
– They	need	this
– And	that?
– And	what	about	that?
– And	how	can	I	do	that?
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Use-cases

• Let’s	switch	the	gear	from	system	(mesos)	
level	to	user	(application)	level.

• How	do	you	support	their	myriad	range	of	
apps	that	have	unique	use-cases	?

• How	do	you	provide	a	common	platform	that	
all	these	apps	can	leverage	?

• None	of	containerizer	provides	functionalities	
out	of	the	box	that	you	need	to	support	these	
heterogeneous	apps	on	a	single	cluster.
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Issue	1:

Structured	Logging
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Structured	Logging
• By	default,	Mesos	just	stores	the	STDOUT/STDERR		of	
the	containers	in	plain	text	in	the	sandbox.	

• And	it	just	piles	up.
• With	the	newer	Mesos	0.27,	it	lets	you	do	logrotate	on	
those	files	with	“LogrotateContainerLogger”	module.

• And	I	guess	that’s	about	it.
• This	may	not	be	sufficient	for	some	apps	to	point	all	
the	output	to	STDOUT/STDERR.

• What	if	they	generate	multiple	log	files	and	want	to	
keep	them	separate?

• What	if	your	app	generates	binary	data	in	logs?
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Structured	Logging
• There	is	no	structured	solution	for	logs	with	Mesos.
• Apps	have	varied	use	cases	for	logs
– Some	want	to	index	in	Elasticsearch
– Some	want	to	persist	in	object	storage
– Some	want	to	run	analytics	in	real	time	on	grid

• In	short,	logs	have	to	shipped	away	
– Either	to	centralized	logging
– Either	to	message	queues
– Either	to	stream	processing	platform	like	Riemann or	
Graylog for	real-time	metrics	analysis

• So	you	have	to	provide	a	solution	that	covers	all	these	
use-cases
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Issue	2:

Application	Secrets
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Application	secrets
• One	of	the	main	things	while	running	
containerized	workload	is	how	do	you	deal	with	
secrets

• Secrets	are	important.	More	important	how	to	
properly	secure	them	in	containerized	envt.

• Some	of	the	secrets	that	you	may	need	are:
– Database	credentials
– API	tokens
– TLS	certificates/keys
– GPG	keys
– SSH	keys
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Fig1:	Evolution	5	(Parry,	2012).		
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Application	secrets
• Again	docker	doesn't	have	any	solution.	They	have	tons	of	

PRs:	(Stijn,	2015).
– Add	private	files	support	#5836
– Add	secret	store	#6075
– Continuation	of	the	docker	secret	storage	feature	#6697
– The	Docker	Vault"	#10310
– Provide	roadmap	/	design	for	officially	handling	secrets.	Make	

injecting	secrets	pluggable,	so	that	they	use	existing	offerings	in	
this	area,	for	example:	Vault,	Keywiz,	Sneaker

• Solution	should	be	how	we	can	pass	application	secrets	
dynamically	during	container	runtime.

• I	gave	a	talk	about	that	at	USENIX	and	SCALE.
– More	details	at:	http://elasticcompute.io
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Issue	3:

Application	Configuration	
Management
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Application	Config	Management
• All	the	heterogeneous	apps	now	need	a	common	place	from	where	

they	can	pull	their	configs
• We	can’t	let	different	apps	pulling	configs	from	various	stores.	

– Integration	with	Mesos	could	become	challenging	for	some
• And	we	cant	be	always	be	baking	configs	in	images
• And	all	the	same	issues	discussed	in	previous	slide	applies
• Also,	if	you	want	to	make	your	environment	really	dynamic:

– you	should	be	able	to	change	configs	in	the	containers	on	the	fly	
– and	reload	them
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Issue	4:

Running	databases
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Run	databases
• Besides	running	frontends,	there	is	a	genuine	
need	to	run	backend	databases	with	Mesos

• Problem	is	containers	are	ephemeral
• So	to	achieve	persistence,	databases	should	be	
run	on	some	shared	storage	like	NFS	or	through	
some	mounts

• If	it	is	NFS,	then	the	volume	is	exposed	to	all	the	
hosts	in	the	cluster.

• But	if	I	am	running	it	through	NFS,	what	is	the	
need	to	run	from	Mesos?
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Run	databases
• Solution	is	to	use	a	block	device	that	provides	one	to	one	container	

mapping
• If	it	is	one	to	one	container	mapping,	what	happens	when	the	

container	goes	away?
• The	new	container	should	be	able	to	use	the	block	device	again
• So,	the	solution	should	be	able	to:

– Mount	- Locks,	Maps	and	Mounts	Block	Device	to	the	Host	system	
– Unmount	- Unmounts,	Unmaps	and	Unlocks	the	Block	Device	on	

request
• We	have	created	this	docker plugin	for	CEPH DFS:	

https://github.com/yp-engineering/rbd-docker-plugin
• It	is	now	an	official	block	device	solution	with	CEPH recommends
• Our	idea	is	to	use	the	same	commodity	hardware	for	carving	out	

block	devices	from	the	cluster
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Issue	5:

Integrations	with	hardware	load	
balancers
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Integrations	with	hardware	load	
balancers

• All	the	other	software	service	discovery	mechanism	
like:	mesos-dns,	Consul,	Bamboo/HAProxy or	Traefik	
are	good

• Some	of	them	are	buggy,	WIP,	limited	feature	set	and	
haven’t	been	tested	at	production	workload

• When	it	comes	to	supporting	production	workload,	
there	is	an	official	need	to	integrate	with	existing	
hardware	load-balancer

• They	provide	robust	features	like:	websockets,	SSL	
termination,	custom	health	checks,	fancy	graphs	etc.

• More	so,	you	company	has	heavily	invested	in	them	
already	;-)
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Integrations	with	hardware	load	
balancers

• Typically,	we	statically	configure	members	for	
a	VIP	in	hardware	LB

• In	this	ephemeral	containerized	envt,	there	is	
a	need	to	update	the	members	of	the	pool	
dynamically

• So,	they	should	be	integrated	to	listen	to	the	
change	of	state	of	the	cluster
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Issue	6:

Isolating	resource	hogs
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Isolating	resource	Hogs
• Some	apps	are	I/O	or	network	intensive
• They	have	a	tendency	to	starve	or	severely	affect	other	apps	running	on	

the	same	host
• If	you	don’t	have	proper	isolations,	you	can’t	effectively	run	

heterogeneous	workload
• For	network	traffic	control:

– MesosContainerizer:	already	an	isolator	for	“net_cls”
– Docker:	you	have	to	pass	a	“cgroup	net_cls”	option

• For	Disk	I/O	control:
– MesosContainerizer:	Nothing	 right	now
– Docker:	docker-1.10	has	added	options	 to	control	disk	I/O

• --device-read-bps,	--device-write-bps,	--device-read-iops,	--device-write-iops,	and	--blkio-
weight-device

• For	now,	we	have	profiled	those	apps	and	run	them	on	dedicated	
resources	(semi	static	partitioning)
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Other	lessons	learned
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Other	lessons	learned
• Troubleshooting	apps	in	production
– Enable	ssh	access?
– How	to	be	SOX/PCI	compliance?

• If	all	the	dev	teams	want	full	control,	do	you	run	single	
cluster	or	multiple	small	clusters?

• Remember	the	80/20	rule	— 80%	of	the	performance	
improvement	comes	from	tuning	the	application,	and	
the	rest	20%	comes	from	tuning	the	infrastructure	
components.

• Now	that	all	things	are	HA,	you	should	seriously	
consider	if	you	need	underlying	RAID	config	on	your	
machines
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Other	lessons	learned
• Lots	of	new	components	
• Setup	for	any	new	component	is	easy	but	running	
them	in	production	is	different

• Simulate	any	new	component	with	a	peak	load
• Monitor	and	alert	on	every	entry	and	exit	
endpoint.	Monitor	for	thresholds.

• Lots	of	floating	pieces.	Needs	to	be	anchored.
• All	the	components	need	to	be	thoroughly	
understood

• Administration	
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Our	solution
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What	should	be	optimal	solution	?
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Conclusion
• Docker is	slow
• I	don’t	want	to	wait	on	what	they	are	going	to	release
• And	some	of	the	extensions	they	provide	aren’t	really	

modular
• It’s	like	my	way	or	highway
• I	have	an	immediate	need	of	new	features	now
• I	have	an	immediate	need	to	support	my	heterogeneous	

workload	that	has	varying	needs
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Conclusion/Preaching
• Have	to	build	these	extensions	using	Isolator	modules	or	

hooks	within	Mesos
• Stop	treating	containerization	as	a	second	class	citizen	within	

Mesos
• Stop	saying	containerization	serves	as	one	of	its	goals
• Sooner	or	later,	everything	would	be	running	in	containers
• Mesos	should	be	a	solid	orchestrator	covering	most	of	the	

use-cases	that	we	discussed	today
• Because	if	it	doesn’t,	Mesos	will	just	end	up	being	a	resource	

manager	and	scheduler
• And	in	the	end,	it	will	be	running	other	orchestrators	like	

kubernetes and	swarm as	framework	on	Mesos
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What	are	we	doing	at	YP	Engineering?

• We	are	doing	all	these	crazy	stuff	you	saw	earlier
• Building,	managing	and	running	them	at	scale
• Open	source	contribution:

www.github.com/yp-engineering
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Thank	you	for	listening	!!

Q/A
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