
Lessons	learned	from	running	
heterogeneous	workload	on	Mesos

Imran	Shaikh
Lead/Architect

Blog http://elasticcompute.io
@imranshaikh

MesosCon 2016



Agenda
• Heterogeneous	workload
• Isolation	techniques
• Heterogeneous	workload	problems:

– Structured	 logging
– Application	secrets
– Application	config	management
– Running	 databases
– Integrations	with	existing	infrastructure
– Isolating	resource	hogs
– etc.

• Other	production	tweaks
• Our	solution
• What	should	be	optimal	solution?
• Conclusion
• Q/A

MesosCon	2016



Heterogeneous	workload

MesosCon	2016

Highly	critical	
billing	systems

Traditional	
Java	Apps

Web	based	
Apps

Infrastructure	
tools

Batch	
processing

Map	reduce	
jobs

Message	
queues

Build	pipeline	
jobs

Relational	
databases

NoSQL	
databases



Heterogeneous	workload

MesosCon	2016

Java Python Node.js Go	Lang

Ruby/Rails ScalaC/C++ JavaScript

PHPPerl



Why	is	it	challenging?
• Workload	often	show	diversity	in	terms	of	resource	
requirements,	priority	and	performance	objectives

• Some	of	the	workload	requires	resource	guarantees	
and	can	be	resource	hog	for	multi-tenant	environment.

• Datacenters	consists	of	machines	with	varied	capacities	
and	characteristics	(unless	you	are	on	cloud)

• Heterogeneous	workload	+	ephemeral	environment	
doesn't	make	it	easy

• Whatever	we	do,	remember	that	effective	workload	
management	remains	a	difficult	challenge

MesosCon	2016



Pre-requisite

• The	first	pre-requisite	is:	ISOLATION
• Isolation	can	be	achieved	through	containers.
• Isolation	of	process	space,	file-system,	
network	stack,	user	namespace,	disk	usage,	
disk	IO,	network	bandwidth	etc.	

• With	Mesos,	you	can	do	it	with	Mesos/Unified	
containerizer	or	Docker	containerizer

MesosCon	2016



Mesos	vs	Docker	containerizer

MesosCon	2016

Mesos

Mesos	Containerizer Docker	Containerizer

CPU
Memory

Disk
Network

mesos-docker-executor

docker-engine

mesos-executor

isolators



Pros/Con

MesosCon	2016

Mesos/Unified containerizer Docker containerizer
Pros Pros
• fine	grained	operating	system	controls	e.g.,	cgroups &	

namespaces
• Standard way	of	orchestrating	docker	containers	

through	Mesos

• Already	provides	 custom	isolators	like	disk	 quota,	
network	performance	&	segregations

• Battle	tested.	It	just works	with	scale.

• Pick	and	choose	which isolators	you	want	while	
container	initialization

• Easily extensible	with	custom	isolators	

Con Con
• Cannot leverage	additional	features	of	docker-engine

like	ps,	logs,	exec,	inspect	 etc.
• Need	to	maintain	docker-engine on	every	mesos	

agent.

• And	when	you	upgrade docker-engine,	 tasks	die

• Only provides	 CPU	and	Memory	isolations



Assumption
• Don’t	get	bogged	down	with	the	details	of	each
• Whatever	containerizer	you	choose,	trust	me	there	is	a	
lot	of	work	ahead

• Production	containerized	workload	isn’t	as	simple	as	
spinning	up	a	container	and	you	are	over	with

• And	the	problem	is	if	you	have	sold	the	Mesos	idea	too	
much	in	your	company,	they	will	come	haunt	you	back
– They	need	this
– And	that?
– And	what	about	that?
– And	how	can	I	do	that?

MesosCon	2016



Use-cases

• Let’s	switch	the	gear	from	system	(mesos)	
level	to	user	(application)	level.

• How	do	you	support	their	myriad	range	of	
apps	that	have	unique	use-cases	?

• How	do	you	provide	a	common	platform	that	
all	these	apps	can	leverage	?

• None	of	containerizer	provides	functionalities	
out	of	the	box	that	you	need	to	support	these	
heterogeneous	apps	on	a	single	cluster.

MesosCon	2016



Issue	1:

Structured	Logging

MesosCon	2016



Structured	Logging
• By	default,	Mesos	just	stores	the	STDOUT/STDERR		of	
the	containers	in	plain	text	in	the	sandbox.	

• And	it	just	piles	up.
• With	the	newer	Mesos	0.27,	it	lets	you	do	logrotate	on	
those	files	with	“LogrotateContainerLogger”	module.

• And	I	guess	that’s	about	it.
• This	may	not	be	sufficient	for	some	apps	to	point	all	
the	output	to	STDOUT/STDERR.

• What	if	they	generate	multiple	log	files	and	want	to	
keep	them	separate?

• What	if	your	app	generates	binary	data	in	logs?

MesosCon	2016



Structured	Logging
• There	is	no	structured	solution	for	logs	with	Mesos.
• Apps	have	varied	use	cases	for	logs
– Some	want	to	index	in	Elasticsearch
– Some	want	to	persist	in	object	storage
– Some	want	to	run	analytics	in	real	time	on	grid

• In	short,	logs	have	to	shipped	away	
– Either	to	centralized	logging
– Either	to	message	queues
– Either	to	stream	processing	platform	like	Riemann or	
Graylog for	real-time	metrics	analysis

• So	you	have	to	provide	a	solution	that	covers	all	these	
use-cases

MesosCon	2016



Issue	2:

Application	Secrets

MesosCon	2016



Application	secrets
• One	of	the	main	things	while	running	
containerized	workload	is	how	do	you	deal	with	
secrets

• Secrets	are	important.	More	important	how	to	
properly	secure	them	in	containerized	envt.

• Some	of	the	secrets	that	you	may	need	are:
– Database	credentials
– API	tokens
– TLS	certificates/keys
– GPG	keys
– SSH	keys

MesosCon	2016



VMs,	
Static	

provisioning

Baking	secrets

Environment	
variables

Encryption
Secrets	store

Fig1:	Evolution	5	(Parry,	2012).		

MesosCon 2016



Application	secrets
• Again	docker	doesn't	have	any	solution.	They	have	tons	of	

PRs:	(Stijn,	2015).
– Add	private	files	support	#5836
– Add	secret	store	#6075
– Continuation	of	the	docker	secret	storage	feature	#6697
– The	Docker	Vault"	#10310
– Provide	roadmap	/	design	for	officially	handling	secrets.	Make	

injecting	secrets	pluggable,	so	that	they	use	existing	offerings	in	
this	area,	for	example:	Vault,	Keywiz,	Sneaker

• Solution	should	be	how	we	can	pass	application	secrets	
dynamically	during	container	runtime.

• I	gave	a	talk	about	that	at	USENIX	and	SCALE.
– More	details	at:	http://elasticcompute.io

MesosCon	2016



Issue	3:

Application	Configuration	
Management

MesosCon	2016



Application	Config	Management
• All	the	heterogeneous	apps	now	need	a	common	place	from	where	

they	can	pull	their	configs
• We	can’t	let	different	apps	pulling	configs	from	various	stores.	

– Integration	with	Mesos	could	become	challenging	for	some
• And	we	cant	be	always	be	baking	configs	in	images
• And	all	the	same	issues	discussed	in	previous	slide	applies
• Also,	if	you	want	to	make	your	environment	really	dynamic:

– you	should	be	able	to	change	configs	in	the	containers	on	the	fly	
– and	reload	them

MesosCon	2016



Issue	4:

Running	databases

MesosCon	2016



Run	databases
• Besides	running	frontends,	there	is	a	genuine	
need	to	run	backend	databases	with	Mesos

• Problem	is	containers	are	ephemeral
• So	to	achieve	persistence,	databases	should	be	
run	on	some	shared	storage	like	NFS	or	through	
some	mounts

• If	it	is	NFS,	then	the	volume	is	exposed	to	all	the	
hosts	in	the	cluster.

• But	if	I	am	running	it	through	NFS,	what	is	the	
need	to	run	from	Mesos?

MesosCon	2016



Run	databases
• Solution	is	to	use	a	block	device	that	provides	one	to	one	container	

mapping
• If	it	is	one	to	one	container	mapping,	what	happens	when	the	

container	goes	away?
• The	new	container	should	be	able	to	use	the	block	device	again
• So,	the	solution	should	be	able	to:

– Mount	- Locks,	Maps	and	Mounts	Block	Device	to	the	Host	system	
– Unmount	- Unmounts,	Unmaps	and	Unlocks	the	Block	Device	on	

request
• We	have	created	this	docker plugin	for	CEPH DFS:	

https://github.com/yp-engineering/rbd-docker-plugin
• It	is	now	an	official	block	device	solution	with	CEPH recommends
• Our	idea	is	to	use	the	same	commodity	hardware	for	carving	out	

block	devices	from	the	cluster

MesosCon	2016



Issue	5:

Integrations	with	hardware	load	
balancers

MesosCon	2016



Integrations	with	hardware	load	
balancers

• All	the	other	software	service	discovery	mechanism	
like:	mesos-dns,	Consul,	Bamboo/HAProxy or	Traefik	
are	good

• Some	of	them	are	buggy,	WIP,	limited	feature	set	and	
haven’t	been	tested	at	production	workload

• When	it	comes	to	supporting	production	workload,	
there	is	an	official	need	to	integrate	with	existing	
hardware	load-balancer

• They	provide	robust	features	like:	websockets,	SSL	
termination,	custom	health	checks,	fancy	graphs	etc.

• More	so,	you	company	has	heavily	invested	in	them	
already	;-)

MesosCon	2016



Integrations	with	hardware	load	
balancers

• Typically,	we	statically	configure	members	for	
a	VIP	in	hardware	LB

• In	this	ephemeral	containerized	envt,	there	is	
a	need	to	update	the	members	of	the	pool	
dynamically

• So,	they	should	be	integrated	to	listen	to	the	
change	of	state	of	the	cluster

MesosCon	2016



Issue	6:

Isolating	resource	hogs

MesosCon	2016



Isolating	resource	Hogs
• Some	apps	are	I/O	or	network	intensive
• They	have	a	tendency	to	starve	or	severely	affect	other	apps	running	on	

the	same	host
• If	you	don’t	have	proper	isolations,	you	can’t	effectively	run	

heterogeneous	workload
• For	network	traffic	control:

– MesosContainerizer:	already	an	isolator	for	“net_cls”
– Docker:	you	have	to	pass	a	“cgroup	net_cls”	option

• For	Disk	I/O	control:
– MesosContainerizer:	Nothing	 right	now
– Docker:	docker-1.10	has	added	options	 to	control	disk	I/O

• --device-read-bps,	--device-write-bps,	--device-read-iops,	--device-write-iops,	and	--blkio-
weight-device

• For	now,	we	have	profiled	those	apps	and	run	them	on	dedicated	
resources	(semi	static	partitioning)

MesosCon	2016



Other	lessons	learned

MesosCon	2016



Other	lessons	learned
• Troubleshooting	apps	in	production
– Enable	ssh	access?
– How	to	be	SOX/PCI	compliance?

• If	all	the	dev	teams	want	full	control,	do	you	run	single	
cluster	or	multiple	small	clusters?

• Remember	the	80/20	rule	— 80%	of	the	performance	
improvement	comes	from	tuning	the	application,	and	
the	rest	20%	comes	from	tuning	the	infrastructure	
components.

• Now	that	all	things	are	HA,	you	should	seriously	
consider	if	you	need	underlying	RAID	config	on	your	
machines

MesosCon	2016



Other	lessons	learned
• Lots	of	new	components	
• Setup	for	any	new	component	is	easy	but	running	
them	in	production	is	different

• Simulate	any	new	component	with	a	peak	load
• Monitor	and	alert	on	every	entry	and	exit	
endpoint.	Monitor	for	thresholds.

• Lots	of	floating	pieces.	Needs	to	be	anchored.
• All	the	components	need	to	be	thoroughly	
understood

• Administration	

MesosCon	2016



Our	solution

MesosCon	2016



Marathon CPU:	1
Mem:	1GB
Instance:	4

1

2

Mesos	Agent

docker-wrapper

docker	engine

Container
App1

Container
App3

Container
App3

Container
App2

MesosCon	2016

Mesos-Master

docker-
containerizer

Secrets	
generatorSecrets	store

Application	
Configs	

generator
App	config

store

Block	device	
pluginCEPH

Logging	driver

Message	Queue

ElasticSearch

Stream	processing	
language

2

3

4

5

6

7
8

9



What	should	be	optimal	solution	?

MesosCon	2016



Marathon CPU:	1
Mem:	1	GB
Instance:	4

1

2

Mesos	Agent

Container
App1

Container
App3

Container
App3

Container
App2

MesosCon	2016

Mesos-Master

mesos-
containerizer

Secrets	
generatorSecrets	store

Application	
Configs	

generator
App	config

store

Block	device	
pluginCEPH

Logging	driver

Message	Queue

ElasticSearch

Stream	processing	
language

2

4

5

6

7

Isolator	1 Isolator	2

Isolator	3 Isolator	4



Conclusion
• Docker is	slow
• I	don’t	want	to	wait	on	what	they	are	going	to	release
• And	some	of	the	extensions	they	provide	aren’t	really	

modular
• It’s	like	my	way	or	highway
• I	have	an	immediate	need	of	new	features	now
• I	have	an	immediate	need	to	support	my	heterogeneous	

workload	that	has	varying	needs

MesosCon	2016



Conclusion/Preaching
• Have	to	build	these	extensions	using	Isolator	modules	or	

hooks	within	Mesos
• Stop	treating	containerization	as	a	second	class	citizen	within	

Mesos
• Stop	saying	containerization	serves	as	one	of	its	goals
• Sooner	or	later,	everything	would	be	running	in	containers
• Mesos	should	be	a	solid	orchestrator	covering	most	of	the	

use-cases	that	we	discussed	today
• Because	if	it	doesn’t,	Mesos	will	just	end	up	being	a	resource	

manager	and	scheduler
• And	in	the	end,	it	will	be	running	other	orchestrators	like	

kubernetes and	swarm as	framework	on	Mesos

MesosCon	2016



What	are	we	doing	at	YP	Engineering?

• We	are	doing	all	these	crazy	stuff	you	saw	earlier
• Building,	managing	and	running	them	at	scale
• Open	source	contribution:

www.github.com/yp-engineering

MesosCon	2016



REFERENCE	LIST
• Parry,	Wynne.	(2012).	File:human-evolution.jpg.[Image	file].	Retrieved	 from:	

http://www.livescience.com/images/i/000/025/831/original/human-evolution.jpg?1332952687
• Stijn,	Sebastiaan.	(2015).	Secrets:	write-up	best	practices,	do's	and	don'ts,	roadmap	#13490.	

Retrieved	 from:	https://github.com/docker/docker/issues/13490
• Docker:	http://www.docker.com
• Mesos:	http://mesos.apache.org
• Kubernetes:	http://kubernetes.io
• Swarm:	https://docs.docker.com/swarm/
• Vault:	https://www.vaultproject.io/
• Keywhiz:	http://square.github.io/keywhiz/
• Sneaker:	https://github.com/codahale/sneaker
• CEPH	DFS	docker-plugin:	https://github.com/yp-engineering/rbd-docker-plugin
• Mesos-dns:	https://github.com/mesosphere/mesos-dns
• Consul:	http://consul.io
• Traefik:	https://traefik.io/
• Bamboo/HAProxy:	https://github.com/QubitProducts/bamboo	
• Elasticsearch:	https://www.elastic.co/
• Riemann:	http://riemann.io/
• Graylog:	https://www.graylog.org/
• CEPH:	http://ceph.com/

MesosCon	2016



Thank	you	for	listening	!!

Q/A

Imran	Shaikh
Lead/Architect

Blog http://elasticcompute.io
@imranshaikh

imran@elasticcompute.io

MesosCon	2016


