OpenDaylight OpenFlow & OVSDB Projects & Use Cases

Abhijit Kumbhare, OpenFlow Project Lead & OpenDaylight TSC Member, Ericsson
Anil Vishnoi, OVSDB Project Lead & OpenDaylight TSC Member, Brocade
Agenda

• OpenFlow Plugin Project
• OVSDB Project
• OpenDaylight Use Cases
• References
Agenda

• OpenFlow Plugin Project
 • Project Overview
 • New in Boron
 • Future Direction
• OVSDB Project
• OpenDaylight Use Cases
• References
OpenFlow Plugin Project Overview

• One of the first community projects started in Hydrogen release
 • Past & Present Participants from Brocade, Cisco, Ericsson, HP, IBM, Inocybe, Intel, Pantheon, Red Hat, TCS, etc.
 • Number of contributors: 97
 • Plus contributions in other forms - CSIT, etc.
• Number of commits: ~1750
• Source code : 186 KLoCs
• Bugs fixes to-date (resolved/verified and fixed): 493
Offset 1 Project central to OpenDaylight

Opendaylight Boron Project Dependencies

Consumers: 20+ ODL projects including NetVirt-VPN, SFC, VTN, GBP, NIC, etc.
OF Plugin Consumer Model

Applications
- OVSDB
- VTN
- GBP

RESTCONF

CONTROLLER
- MD-SAL
- Oper DS
- Config DS
- OF Yang Models

<<Write>> (DS) <<Notify>> (DS)

Statistics Manager
Inventory Manager
Topology Manager
Forwarding Rule Manager

<<Notification>> (Yang) <<RPC>>

OpenFlow Core Plugin

OpenFlow Plugin

OpenFlow Java

<<Open Flow Protocol>>

ovs-bridge
Host Node

Host Node
OpenFlow Plugin Feature List

- Support for OpenFlow 1.0 and 1.3 versions
- Flow programming via config datastore (using REST API) & RPCs
- Commercial Grade Robustness
 - OpenFlow clustering support
 - Reconciliation:
 - flow/meter/group provisioning functionality which ensures that switches properly reflect intended controller configurations in wake of HA scenarios like switch-restarts
 - Batch Flow Programming
OpenFlow Plugin Team*

- Andrej Leitner
- Anil Vishnoi
- Hema Gopalkrishnan
- Jozef Bacigal
- Kamal Rameshan
- Luis Gomez (Test Contact)
- Martin Bobak (Lithium-Beryllium)
- Michal Rehak (till Beryllium)
- Miroslav Macko (Tests)
- Muthukumaran K
- Renato Aguiar
- Sanjib Mahapatra (Tests)
- Shuva Jyoti Kar
- Tomas Slusny
- Yi Yang

* Major contributors last 2 releases only - many other contributors earlier.
New in Boron

- **New design**
 - Adopted as the standard design
 - Cleaner design for current & future improvements
 - Performance improvements, deterministic API, better stats collection, etc.

- **Singleton Clustering**
 - New Clustering Singleton approach in MD-SAL project provides & encapsulates all leadership changes
 - Now downstream project like OpenFlow do not need to take care of device clustering leadership change, and only uses clustering singleton API to react to leadership change
 - Improves robustness of the OpenFlow clustering

- **Blueprint Migration**
 - Improve plugin upgradeability and simpler configuration
New in Boron (contd)

• Bulk-O-Matic
 • A test application with REST interface for measuring flow programming performance
 • Can choose Datastore or RPCs for flow programming perf test
• Forwarding Rules Synchronizer
 • New OFP app for provisioning flows / groups / meters using config DS
 • Compares differences between DS changes - to send incremental updates only
 • Includes retry mechanism on failure
 • Redesign of Forwarding Rules Manager (FRM)
 • Separate feature not installed by default currently
• Various other changes: features cleanup, table features default off, etc.
Carbon Thoughts

• Bulk-O-Matic PoC to study Performance Optimization by using OpenFlow Java Library models directly
 • Current flow programming uses abstracted OpenFlow Plugin models which OpenFlow Java Library translated to either OpenFlow 1.0 or 1.3 models.
 • PoC to study use of OpenFlow Java 1.3 specific models directly by apps.
• Usability improvements for apps - config parameters, flow install confirmation, CLI info commands, stats collection improvements, etc.
• Please join DDF session Wednesday 12 pm for Carbon Planning
Agenda

• OpenFlow Plugin Project
• OVSDB Project
• OpenDaylight Use Cases
• References
OVSDB Project: Overview

- OVSDB Schema Support (Ovsdb Southbound Plugin)
- Hardware VTEP Schema Support (HwVtep Southbound Plugin)
- Library for en/de - coding OVSDB json-rpc messages
- Both the plugins support clustering
- Ovsdb Southbound plugin supports - Config reconciliation
- Config reconciliation is partially supported is on the list for Hardware VTEP.
- Both the plugin can be parallelly loaded in Controller
- Looking for more details?
 - Summit Talk: http://sched.co/7Rqj
 - Wiki: https://wiki.opendaylight.org/view/OVSDB_Integration:Main
Agenda

• OpenFlow Plugin Project
• OVSDB Project
• OpenDaylight Use Cases
 • NetVirt + VPN Service
 • VTN
 • Other Examples
• References
OpenFlow & OVSDB Plugin

General Usage Model by Network Virtualization Applications
OpenFlow & OVSDB Plugin

General Usage Control Flow by Network Virtualization Applications

Applications

MD-SAL Data Store

Listen
CRUD

Listen
CRUD

OVSD SB Plugin

OVSD Library

Notification
Transact

OpenFlow Plugin

OpenFlow Library

Notification
Transact

OVSD Server

OpenFlow vSwitch

Virtual
Or
Physical Host
Components: ODL OpenFlow+OVSDDB Use Cases
OpenFlow Plugin Services consumed by NetVirt:

- OpenFlow node connectivity
- Flow Installation, modification & removal
- Nicira extensions
- Packet-in
Service Function Chaining

- Provide API’s to create Service Function Chain and flow classifiers.
- Support multiple devices -- OVS, VPP, NetConf etc
- Rendered are developed for each type of device
- SFC configuration requires
 - Vxgpe termination point creation
 - Flows on the OpenFlow bridges to steer traffic
- OVS renderer create Bridge/Termination point (e.g vxgpe port) on OVS device using OVSDB plugin to configure chain.
- OpenFlow renderer installs the flows using OpenFlow plugin to route the traffic
- SFC extensively uses OpenFlow plugin’s nicira extensions.
Virtual Tenant Network (VTN)

- Network Virtualization Project in ODL that supports
 - Multi Tenant Virtualization implementation on Openflow switches
 - Fault Tolerant
 - Supports Openstack Integration
 - Supports operating in a Cluster also
- Other Details
 - Available in Opendaylight since Hydrogen release
Key Idea

- VTN is a logical abstraction plane which enables complete separation of logical plane from physical plane
 - Users can define a logical network topology without knowing the physical network topology
 - Once logical network designed - VTN will map it to underlying physical network & push the network rules on the switches using OpenFlow
- Advantages
 - Hide the complexity of the underlying network from the tenant administrator
 - Better manage network resources
 - Minimize network config errors
VTN: Components and Dependencies
VTN Dependency on OpenFlow Plugin

• VTN extensively uses
 • Openflowplugin events related to the network (especially inventory related, flow entry removal, packet in received from switch) and handle the changes.
 • Use OpenFlow Plugin RPC to Install/Update/Remove Flow entries
 • Use OpenFlow Plugin RPC to Get statistics of Openflow ports

Note: VTN is a reactive implementation that computes flow entries based on the VTN model created by user and the packet received from switch.
Agenda

• OpenFlow Plugin Project
• OVSDB Project
• OpenDaylight Use Cases
• References
- OpenFlow Plugin Project:
 - Project Wiki
 - IRC channel: #opendaylight-openflowplugin
 - Project Lead Contact Info: Abhijit Kumbhare <abhijitkoss@gmail.com> (email), #abhijitkumbhare (IRC handle)
- Weekly Meeting: Thursdays from 08:00-9:00 am PST/PDT | 11:00-12:00 EST/EDT | 15:00-16:00 UTC during Daylight Time/16:00-17:00 UTC during Standard Time
- Boron Documentation:
 - User Guide
 - Developer Guide
- Spec:
 - OpenFlow 1.3.2
 - OpenFlow 1.0.0
References (contd)

- OVSDB Project:
- Project Wiki
- IRC channel: #opendaylight-openflowplugin
- Project Lead Contact Info: Anil Vishnoi <vishnoianil@gmail.com> (email), #vishnoianil or #avishnoi (IRC handle)
- Weekly Meeting: Tuesday from 10:00-11:00a PST/PDT | 13:00-14:00 EST/EDT | 17:00-18:00 UTC during Daylight Time/18:00-19:00 UTC during Standard Time
- Boron Documentation:
 - User Guide
 - Developer Guide
- Spec:
 - RFC 7047 - The Open vSwitch Database Management Protocol