Innovation in the P4 “Stack”

Jennifer Rexford
Princeton University
"Classic" OpenFlow (1.x)

SDN Control Plane

Installing and querying rules

Target Switch
Simple API as a Magnet

• Simple, open interface
 – OpenFlow 1.0 table of match-action rules
 – … with a small set of headers and actions

• Useful recruiting aid
 – Programming languages
 – Verification

• Many success stories
 – Higher-level control abstractions
 – … and efficient analysis and compilation
Examples: Static Policies

• Data-plane policy as a function
 – Input: located packet (header fields and location)
 – Output: a set of located packets

• Data-plane verification
 – Checking that the function satisfies invariants
 – E.g., no loops, no blackholes, access control, …
Examples: Combining Apps

- **Slicing**
 - Multiple tenants
 - Traffic isolation

- **Composition**
 - Modular applications
 - On the same traffic
Examples: Network Topology

• Abstract topology
 – Controller apps see a virtual topology
 – E.g., one big switch

• Network Info Base
 – Network data model
 – Distributed key-value store

Firewall, Load balancer

C1 C2 C3
Examples: Reading/Writing State

• Queries
 – Traffic and topology
 – Declarative
 – Modular

• Consistent updates
 – Transition from one policy to another
 – …while preserving key invariants
All taking OpenFlow 1.x “as is”…

… but now we can take these lessons and design a *better* interface
P4

SDN Control Plane

Configuring: Parser, tables, and control flow

Populating: Installing and querying rules

Compiler

Parser & Table Configuration → Rule Translator

Target Switch
Many New Opportunities

- **Applications**
 - Compelling P4 apps
 - To stress-test the P4 design
 - … and identify gaps

- **Language**
 - Expression language for primitive actions
 - Support for modular programs
 - More flexible control flow
 - Unambiguous specification
 - QoS mechanisms, monitoring
Many New Opportunities

- Compiler
 - Exploiting opportunities for concurrency
 - Techniques for proving program equivalence
 - Making effective use of the target switch’s resources
 - Updating a switch from one P4 program to another
 - Supporting a wide range of target switches
Collaboration Opportunities

• Crossing the divide
 – Industry with research
 – Computer networking with other fields

• Building a community
 – Open language
 – Open-source software
 – Repository of example P4 applications
 – Tutorials, workshops, hackathons, …
 – Summer internships for grad students
The Day Ahead

- 9:00-11:00: P4 community
- 11:00-11:30: Break/demos
- 11:30-12:30: Panel on user perspectives
- 12:30-1:30: Lunch/demos
- 1:30-3:00: Language evolution & research
- 3:00-3:30: Break/demos
- 3:30-5:00: Applications & targets
- 5:00-5:30: Wrap-up
- 5:30-6:30: Reception/demos
Demos

- **Xilinx**: P4 for an FPGA target
- **Barefoot**: Inband Network Telemetry in P4
- **Dell**: Tunnel splicing with visibility and monitoring
- **Intel**: P4 Applied to a vSwitch Data Plane
- **Microsoft**: Verification of P4 programs
- **Netronome**: P4 for Network Flow Processors
- **Yale**: Magellan: Compiling Datapath-Oblivious Packet Processors to P4
- **Rocker**: P4 switch support in Rocker
- **USC**: In-network layer-4 load balancing in P4
- **ON.Lab**: An ONOS controller for a P4 switch
- **Princeton**: Utilization Aware Load Balancing using P4
Thank you!