Steering Xenomai into the Real-Time Linux Future

Jan Kiszka | Embedded Linux Conference, March 13, 2018
Agenda

Xenomai – what is this again?

Do we still need it?

Looking back & current status

Midterm changes to come

Architectural outlook

Summary
Refresher: What is Xenomai?

Xenomai is an RTOS-to-Linux Portability Framework

It comes in two flavors

• as co-kernel extension for (patched) Linux
• as libraries for native Linux (including PREEMPT-RT)

It's also the only remaining product-grade co-kernel for Linux
Co-Kernel in a Nutshell

- **Task**
- **Task**
- **Task**
- **Task**
- **Task**

Userspace Process

Kernel

- **Scheduler A**
- **Preemption**
- **Scheduler B**

Dispatching and Collaboration Services

Hardware

IRQ

Hardware
When do you want a co-kernel?

Accurate modeling of legacy RTOS behavior
- Non-POSIX scheduling policies
- Special APIs with POSIX-incompatible impact (specifically on scheduling)

Strong separation of RT and non-RT code paths
- Avoid tricky configuration (build-time & runtime) for stable PREEMPT-RT deployments
- Large RT code base, 3rd-party libraries, not only Linux/RT-aware developers
- Use RT → non-RT switch signaling to preserve RT architecture

Latency and/or performance concerns
- PREEMPT-RT == more context switches
- Problematic on low-end hardware or co-located high-throughput workload
When do you NOT want a co-kernel?

None of the aforementioned reasons apply

• RT turns out to be a soft requirement
• PREEMPT-RT is “good enough”
• Application’s RT architecture is manageable

You are concerned about co-kernel integration & maintainability

• Good point, more about this later...
• Just keep in mind: PREEMPT-RT requires maintenance as well, out-of-tree as well as in-tree
Xenomai History

Xenomai 1.0
• Announced in 2001 – as portability framework for RTOS applications
• Required a real-time basis
• Development of ADEOS layer for Linux and RTAI
• Merged with RTAI => RTAI/fusion

Xenomai 2.0
• Departed from RTAI in 2005 – incompatible design goals
• Evolved ADEOS to I-pipe layer (also used by RTAI)
• Ported to 6 architectures

Xenomai 3.0
• Released in 2015 after >5 years of development
• Rework of in-kernel core (now POSIX-centric)
• Support for native Linux
Xenomai Applications

• Machine / motion control systems, PLCs
• Printing machines (manroland)
• Printers / copying machines (Xerox)
• 3D printers (see talk on Wednesday)
• Network switches (e.g. Ruggedcom)
• Magnetic resonance tomographs (Siemens Healthcare)
• OROCOS (OSS robotics framework)
• Robotic research projects
• Manned spaceflight software reference platform (NASA)
• …
The Shadow User Base

• Many more applications in the shadow
• Some known to the maintainers (e.g. autonomous logistics vehicles), some suspected
• Embedded World Exhibition 2018 (Nuremberg, Germany)
 • Service providers advertising Xenomai support
 • NXP offers BSPs, demonstrates TSN
 • Known to many hardware and service companies
• Over 700 subscribers on the mailing list
• So... a healthy project?
Key Contributors of the Last 5 Years

• Philippe Gerum → customer-funded + personal budget
• Gilles Chanteperdrix → spare-time, partly employer-funded
• Jan Kiszka → employer-funded
• Jorge Ramirez-Ortiz → employer-funded, partly spare-time
• Henning Schild → employer-funded
• Dmitriy Cherkasov → customer-funded, now spare-time
Gilles Chanteperdrix, 1975-2016

He is sorely missed.
Xenomai in Danger

• Too much work for a single maintainer with few contributors
• At Siemens, discussion started in 2017
 • Migrate or invest?
 • Coordinated effort of internal users
 • Decision: invest into Xenomai
• “RTnet, Analogy and the elephant in the room”
 • External call for contributions
 • Raised awareness, brought in first commitments
“New year, new roles”

• Philippe will step back from project lead
 • continues to support with reviews and specific tasks
 • concentrates on new co-kernel architecture (more later)

• /me will take over project lead

• Switch to take place summer..autumn this year

• New I-pipe work-split
 • ARM: Philippe Gerum
 • ARM64: Dmitriy Cherkasov
 • PPC32: Steven Seeger
 • x86: Jan Kiszka
 • Integration: Philippe
Maintaining the I-pipe Kernel Patch

• Out-of-tree is always a challenge
• Only limited support feasible, currently
 • 4.4 (all archs, may be limited to x86 & ARM)
 • 4.9 (all archs, pending issues on x86)
 • 4.14 (no x86 yet, adaptations for FPU changes needed)
 • Stable updates can lag behind
• Discontinued archs: NIOS2, SH, Blackfin, PPC64, ARM < v7
• 4.14: I-pipe now patch queue of logical increments (easier to base on own trees)
• New policy: only maintain patches for latest LTS
 • Additional kernels depending on contributors
 • Siemens will offer 4.4, soon based on CIP SLTS kernel
Xenomai 3.0 & 3.1

• **Xenomai 3.0.7 (current stable) to be released soon**
 • RTnet fixes merged
 • Last topic: I-pipe patch updates

• **Criteria for 3.1 release not yet set in stone**
 • Will introduce ARM64
 • Several core improvements like fast prio-ceiling mutexes and fast setscheduler
 • 4.14 shall be supported for all target archs

• **Reminder: Xenomai 2 is UNMAINTAINED!**
Xenomai Driver Stacks

• RTnet: refreshed recently (3.0.7), but needs more love
 • Drop old drivers, refresh current ones
 • Rethink core for upcoming TSN architecture
• UART, GPIO, SPI and CAN currently look good
• Analogy (analogue I/O) is orphaned
• We need driver subsystem maintainers!
• We'll drop unmaintained / broken drivers (after prior warning)
Improving the Infrastructure

- **Project hosting will switch to gitlab.denx.de**
 - `philippes_tasks--` (many thanks to Denx!)

- **Private vs. public CI**
 - Denx may provide private (maintainers-only) CI with test farm integration
 - Public CI allows reuse by contributors, but limited to qemu tests
 - Idea: try Travis CI, **contributors welcome**!

- **On-device testing**
 - We will define reference boards
 - Manual distributed testing, **contributors welcome**!
 - Test farm needed, central (Denx?) or distributed?
 - Copy distributed LAVA deployments of AGL, CIP etc.?
And now for something completely different?
Dovetail, Steely – Rethinking Co-Kernels for Linux

• **Goals**
 • Improve integration of co-kernel enabling with Linux kernel (in contrast to I-pipe / Xenomai: abstract kernel away)
 • Further simplify maintenance (as long as out-of-tree)
 • Provide a chance to upstream

• **2 Elements**
 • Dovetail - interrupt routing, co-kernel hooks \(\sim I\)-pipe
 • Steely - co-kernel implementation \(\sim Xenomai\) Cobalt

• **Ongoing development**
 • **Not** Xenomai-compatible
 • **Not** product-ready
 • Do **not** use to fly to Mars
Looking into Dovetail

- **Interrupt pipeline**
 - Prioritize selected interrupts (some can become “NMIs”, doing “out-of-band” work)
 - Solely builds upon irqchip abstraction
 - Reuses existing locking (even lockdep works)

- **Task steeling**
 - Remove Linux task from standard scheduler
 - Return it again

- **Kernel event propagation to co-kernel**
 - Syscalls
 - Faults
 - Signals

- Check out git.xenomai.org/linux-steely.git
- Take a look at Documentation/dovetail/*
Steely – The In-Tree User of Dovetail

- POSIX-compatible RTOS core
- Demonstrates in-tree usage of Dovetail interfaces
- Fundamental rework of Xenomai Cobalt
 - More fine-grained locking (Xenomai 3: single core lock)
 - Scalable (>6 cores)
 - Uses standard clocksources
 - CPU frequency changes supported
 - Compatibility to Xenomai could be added once matured
- Open issue: real-time drivers
 - Only minimal set available
 - How to make upstream drivers co-kernel aware?
- Userspace: git.xenomai.org/steely.git (usage very similar to Xenomai 3)
Status

• Redesign shrunk code base significantly
 • I-pipe → Dovetail: ~ 50%
 • Xenomai → Steely: < 50%
• 347 files changed, 53661 insertions(+), 594 deletions(-)
 • Dovetail: ~14 files changed, 3828 insertions(+)
 • Steely: ~113 files changed, 41955 insertions(+)
 • Rest is hooks in / adaption of existing code
• Works on ARM i.MX 6 and 7, ARM64 WiP
 • Again: ongoing construction work, rebasing, not ready for production use
 • But ready for a try
Summary

• The Co-kernel is here to stay
 • Used in production for >20 years
 • Valid use cases aside PREEMPT-RT

• Industrial usage of real-time Linux has a problem
 • Unhealthy imbalance between give and take
 • Not only Xenomai is suffering from this

• The Xenomai project is alive and kicking – but needs more active users
 • Stand up and provide feedback, publicly!
 • We would welcome more core hackers...
 • ...but we have plenty of other tasks as well
Any Questions?

Thank you!

http://xenomai.org

Jan Kiszka <jan.kiszka@siemens.com>
Xenomai mailing list <xenomai@xenomai.org>