ESTIMATING CARRYING CAPACITY OF ROOSEVELT ELK HERDS USING STATE-SPACE MODELS AND VARIATION IN STRENGTH OF DENSITY DEPENDENCE

Floyd W. WECKERLY¹, Lisa J. KOETKE¹, and Adam DUARTE²

¹Department of Biology, Texas State University, San Marcos, TX, 78666, USA
²Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
SETTING

July

January
Benign Climate ➔ Little Density Independent Influences

$\text{Annual precipitation}_t (\text{cm})$

$$r_{\text{correlation}} = 0.19$$

$\text{Winter low temperature}_t (\text{C})$

$$r_{\text{correlation}} = -0.21$$

STABLE LANDSCAPE
PREDATORS
FOOD

ELK

Abundance

Year

K carrying capacity

[Image of elk grazing in a field with a graph showing population growth with K as the carrying capacity]
ESTIMATE K CARRYING CAPACITY

![Graph showing the growth of abundance over time, approaching K carrying capacity.](image-url)
Variation K ➔ AFFECT POPULATION DYNAMICS

- Abundance vs. Time

- K carrying capacity
STATE-SPACE FORMULATION

- **Gompertz**:
 \[N_{t+1} = N_t e^{r_{max} \left(1 - \frac{\ln(N_t + 1)}{\ln(K + 1)}\right)} \]

- **Ricker**:
 \[N_{t+1} = N_t e^{r_{max} \left(1 - \frac{N_t}{K}\right)} \]

- **θ-Logistic**:
 \[N_{t+1} = N_t e^{r_{max} \left(1 - \left(\frac{N_t}{K}\right)^{\theta}\right)} \]

Observer Error: Count \(\sim \) Poisson(\(\lambda \))
BALD HILLS

- Gompertz
- Θ-logistic
- Ricker
$N_{t+1} = N_t e^{r_{max}(1 - \frac{N_t}{K})}$

$N_{t+1} = N_t e^{r_{max}(1 - (\frac{N_t}{K})^\theta)}$

Model

- **Ricker**
- **Theta-logistic**
\[r = \ln \left(\frac{N_{t+1}}{N_t} \right) \]
\[r = \ln\left(\frac{N_{t+1}}{N_t}\right) \]
January 2017

Elk forage hrs vs. Forage biomass (kg)

\[r^2 = 0.79, \ P = 0.0014 \]

$r = \ln\left(\frac{N_{t+1}}{N_t}\right)$
Thank you
Lower Redwood – Prairie Creek
Juveniles:female_{t+2}

Females, juveniles and sub-adult males_{t}

PLACEHOLDER_1

DECLINE

LOWER K
Intrinsic growth rate (r)
Gompertz

\[N_{t+1} = N_t e^{r_{max} \left(1 - \frac{N_t}{K}\right)} \]

Ricker

\[N_{t+1} = N_t e^{r_{max} \left(1 - \left(\frac{N_t}{K}\right)\theta\right)} \]

\[N_{t+1} = N_t e^{r_{max} \left(1 - \left(\frac{\ln N_t + 1}{\ln K + 1}\right)\theta\right)} \]

\[r = r_{max} \left(1 - \frac{N_t}{K}\right) \]

\[r = r_{max} \left(1 - \left(\frac{N_t}{K}\right)^\theta\right) \]

\[r = r_{max} \left(1 - \frac{\ln(N_t + 1)}{\ln(K + 1)}\right) \]