HABITAT SELECTION BY COLUMBIAN WHITE-TAILED DEER ALONG THE LOWER COLUMBIA RIVER

(Odocoileus virginianus leucurus)

Jon Heale - WSU
Co-Authors: Lisa Shipley & Dan Thornton - WSU
Paul Meyers - USFWS
Background – Columbian white-tailed deer

• Historically, ranged through Washington and Oregon

• Extirpated from most of range by 1900s

• 2 Distinct Population Segments (DPS)
 • Douglas County, OR
 • Lower Columbia River
Background – Columbian white-tailed deer

• Lower Columbia River DPS lacking research

• Remnant populations restricted to islands and bottomlands

• Translocations have been a key management tool

Press Release
Conservation Coalition’s Efforts Move Columbian White-tailed Deer Along Road to Recovery in Washington, Oregon

Service changes status from endangered to threatened, adding to growing list of ESA successes

October 13, 2016
Background – Current and historic range

Julia Butler Hansen Refuge
Mainland Unit

Lower Columbia River DPS
Columbia River
Background – Julia Butler Hansen Refuge (JBH)

- Established in 1971
- Contains >2,400 ha
- Supports 20% of DPS population

Photo credits: J. Heale
Why translocate deer?

- Imminent levee failure at JBH Refuge
 - Failure would be catastrophic for LCR population

- Facilitate population connectivity and recovery
Emergency deer captures

- Multiple capture methods
- GPS on adult/yearling females

Photo credits: USFWS
Translocations & resident collar deployment

• Translocations: 2013 - 2015
 • 88 deer moved
 • 18 GPS collars deployed

• Collar deployment at JBH Refuge 2014 - 2017
 • 16 GPS collars deployed
Collar deployment locations

- **Ridgefield NWR**

- **JBH**
 - Mainland
 - Tenasillahe Island
Pasture management

Grasslands managed by mowing/haying

Reed canarygrass (Phalaris arundinacea) - Invasive

April – October

Cattle grazing used to maintain pastures

April – October

Photo credit: USDA
Objectives and hypotheses

• Characterize habitat selection of the Lower Columbia River DPS of CWTD

• Deer select for the edge of habitat types offering concealment cover

• Deer select against cattle-grazed pastures
 • Preferring managed pastures
JF7 - Cattle Pasture Use

of GPS Locations

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Cattle Present

Daily Use
Habitat selection analysis

- Resource Selection Functions (RSF)
 - Annual
 - Summer (cattle present)
 - Winter (cattle absent)

- Generalized Linear Mixed Models
 - Deer ID as random effect
 - Random slopes
Methods – Model variables

• Habitat type
 • Scrub Shrub
 • Deciduous Forest
 • Coniferous Forest
 • Upland Herbaceous
 • Wetland Herbaceous
 • Managed Pasture
 • Grazed Pasture
 • Other
Methods – Model variables, continued

- **Distance to Open (DTO; m)**
- **Distance to Cover (DTC; m)**
- **Elevation (m)**
Results – Habitat selection
Results – Habitat selection

* significant variable

*a habitat type significantly differs from grazed pasture

<table>
<thead>
<tr>
<th>Variable</th>
<th>Annual</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β Estimate</td>
<td>Relative Habitat Rank</td>
<td>β Estimate</td>
<td>Relative Habitat Rank</td>
<td>β Estimate</td>
<td>Relative Habitat Rank</td>
<td></td>
</tr>
<tr>
<td>Distance to Open</td>
<td>-0.567*</td>
<td></td>
<td>-0.593*</td>
<td></td>
<td>-0.648*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to Cover</td>
<td>-1.874*</td>
<td></td>
<td>-1.678*</td>
<td></td>
<td>-2.014*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>-0.033</td>
<td></td>
<td>-0.583*</td>
<td></td>
<td>0.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrub Shrub</td>
<td>1.034a</td>
<td>1</td>
<td>1.624a</td>
<td>2</td>
<td>0.605a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>0.857a</td>
<td>2</td>
<td>1.099a</td>
<td>4</td>
<td>0.711a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Upland Herbaceous</td>
<td>0.837a</td>
<td>3</td>
<td>1.749a</td>
<td>1</td>
<td>-0.153a</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Wetland Herbaceous</td>
<td>0.722a</td>
<td>4</td>
<td>1.251a</td>
<td>3</td>
<td>0.316a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Managed Pasture</td>
<td>0.517a</td>
<td>5</td>
<td>0.930a</td>
<td>5</td>
<td>0.261a</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Grazed Pasture</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>-0.778a</td>
<td>7</td>
<td>-0.423a</td>
<td>7</td>
<td>-1.043a</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Coniferous Forest</td>
<td>-0.990a</td>
<td>8</td>
<td>-0.830a</td>
<td>8</td>
<td>-1.132a</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

n=30, n=21, n=29
Results – Relative use of cover habitats
Results – Relative use of open habitats
Conclusions

• Deer are selecting for the edge of habitat offering concealment cover

• Deer are selecting against cattle pastures year-round
 • Managed pastures > Grazed pastures
 • Summer > Winter

• Use of cover and open habitat is seasonally variable and dependent on habitat type
Implications & future work

- Selection may be driven by cattle presence or other factors
- Conduct vegetation monitoring in pastures
- Intersperse cover within pastures
- An eye toward delisting
Acknowledgements

• WSU – School of the Environment
• WSU grad students
• USFWS
• LCREP
Questions?
Results – RSF validation

• k-fold cross-validation, Spearman Rank Correlation
Annual NDVI on JBH Mainland Unit

Grazing Season

Month

Treatments:
- Green: Grazed
- Orange: Mowed
Results – Relative use of all habitats

![Graph showing the relative use of various habitats across different distances to the edge of concealment cover (m).](image_url)
<table>
<thead>
<tr>
<th>Model structure</th>
<th>K</th>
<th>AICc</th>
<th>Δ AICc</th>
<th>AICc Wt</th>
<th>R^2_m</th>
<th>R^2_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>habitat type1 + distance to cover + distance to open + elevation</td>
<td>15</td>
<td>228195</td>
<td>0</td>
<td>1</td>
<td>0.28</td>
<td>0.72</td>
</tr>
<tr>
<td>habitat type2 + distance to cover + distance to open + elevation</td>
<td>14</td>
<td>228688</td>
<td>493</td>
<td>0</td>
<td>0.29</td>
<td>0.72</td>
</tr>
<tr>
<td>habitat type1 + distance to cover + distance to open + elevation</td>
<td>12</td>
<td>252371</td>
<td>24177</td>
<td>0</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>habitat type2 + distance to cover + distance to open + elevation</td>
<td>11</td>
<td>253460</td>
<td>25265</td>
<td>0</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>habitat type1</td>
<td>9</td>
<td>265043</td>
<td>36849</td>
<td>0</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>habitat type2</td>
<td>8</td>
<td>266634</td>
<td>38439</td>
<td>0</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>null</td>
<td>2</td>
<td>283898</td>
<td>55703</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Model structure</td>
<td>K</td>
<td>AICc</td>
<td>Δ AICc</td>
<td>AICc Wt</td>
<td>R^2_m</td>
<td>R^2_c</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>habitat type1 + distance to cover + distance to open + elevation</td>
<td>15</td>
<td>104743</td>
<td>0</td>
<td>1</td>
<td>0.31</td>
<td>0.67</td>
</tr>
<tr>
<td>habitat type2 + distance to cover + distance to open + elevation</td>
<td>14</td>
<td>105394</td>
<td>652</td>
<td>0</td>
<td>0.31</td>
<td>0.68</td>
</tr>
<tr>
<td>habitat type1 + distance to cover + distance to open + elevation</td>
<td>12</td>
<td>115807</td>
<td>11064</td>
<td>0</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>habitat type2 + distance to cover + distance to open + elevation</td>
<td>11</td>
<td>116874</td>
<td>12131</td>
<td>0</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>habitat type1</td>
<td>9</td>
<td>122093</td>
<td>17350</td>
<td>0</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>habitat type2</td>
<td>8</td>
<td>123410</td>
<td>18668</td>
<td>0</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>null</td>
<td>2</td>
<td>132689</td>
<td>27946</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Model structure</td>
<td>K</td>
<td>AICc</td>
<td>Δ AICc</td>
<td>AICc Wt</td>
<td>R^2_m</td>
<td>R^2_c</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>habitat type$^1 + distance to cover + distance to open + elevation</td>
<td>15</td>
<td>119953</td>
<td>0</td>
<td>1</td>
<td>0.29</td>
<td>0.74</td>
</tr>
<tr>
<td>habitat type$^2 + distance to cover + distance to open + elevation</td>
<td>14</td>
<td>120020</td>
<td>68</td>
<td>0</td>
<td>0.30</td>
<td>0.74</td>
</tr>
<tr>
<td>habitat type$^1 + distance to cover + distance to open + elevation</td>
<td>12</td>
<td>134091</td>
<td>14138</td>
<td>0</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>habitat type$^2 + distance to cover + distance to open + elevation</td>
<td>11</td>
<td>134341</td>
<td>14389</td>
<td>0</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>habitat type1</td>
<td>9</td>
<td>141051</td>
<td>21099</td>
<td>0</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>habitat type2</td>
<td>8</td>
<td>141563</td>
<td>21610</td>
<td>0</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>null</td>
<td>2</td>
<td>150542</td>
<td>30589</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Model selection

<table>
<thead>
<tr>
<th>Model</th>
<th>K</th>
<th>AICc</th>
<th>Δ AICc</th>
<th>AICc Wt</th>
<th>Log-likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual 5</td>
<td>15</td>
<td>228340.7</td>
<td>0.0</td>
<td>1</td>
<td>-114155.3</td>
</tr>
<tr>
<td>Annual 6</td>
<td>14</td>
<td>228833.4</td>
<td>492.7</td>
<td>0</td>
<td>-114402.7</td>
</tr>
<tr>
<td>Annual 3</td>
<td>12</td>
<td>252519.9</td>
<td>24179.2</td>
<td>0</td>
<td>-126247.9</td>
</tr>
<tr>
<td>Annual 4</td>
<td>11</td>
<td>253606.1</td>
<td>25265.5</td>
<td>0</td>
<td>-126792.1</td>
</tr>
<tr>
<td>Annual 1</td>
<td>9</td>
<td>265195.1</td>
<td>36854.4</td>
<td>0</td>
<td>-132588.5</td>
</tr>
<tr>
<td>Annual 2</td>
<td>8</td>
<td>266785.8</td>
<td>38445.2</td>
<td>0</td>
<td>-133384.9</td>
</tr>
<tr>
<td>Null</td>
<td>2</td>
<td>284061.3</td>
<td>55720.6</td>
<td>0</td>
<td>-142028.6</td>
</tr>
</tbody>
</table>

HabType + dto + dtc + elev + (1|Deer_ID)
- dto, dtc, elev had random slope terms