building High Performance Microservices

with Apache Thrift

Rethinking service APIls in a Cloud Native environment

Presenters

« Randy Abernethy
* ra@apache.org, randy.abernethy@rx-m.com
e Apache Thrift PMC
* CNCF member
e Partner RX-M Cloud Native Consulting

 Jens Geyer
* jensg@apache.org
e Apache Thrift PMC
* Senior Software Engineer at VSX Vogel Software GmbH

VOGEL KXl Rl .Y -

What is Cloud Native?

* Microservice Oriented
e Container Packaged
* Dynamically Orchestrated

-

_—
_H

Problems CGloud Native Solutions Gan Salve:

* Extreme horizontal scale
* Increased server density
* Granular scaling

* Improved and explicit
modularity

e Support for aspirational
development processes
* CI/CD
* Agile development
* Everything as code

* Support for rapid adoption of
new technologies

Sales

|

B e,

il ¢ Sales lost from late launch
") it N

| L

| 1 Sa lum

[.

0 ~af——— Actual sales volume

I X

. e

_

L-- I N N . -i--->

- . R e
Sales lost from Tlme Sales lost from
late to market less time in market

Docker hub has seen 390,000% image pull growth since 2014

K8s has seen 567% growth in commits in just over a year

Google starts over 3,000 containers per second in their
Borg/Omega environment

Pokemon Go: a 30,000 container cloud native application
running on Google Container Engine

Cloud Native Adoption

Kubernetes Commits Pulls
month commits ‘1 000 000
2016-01 199 /
2016.02 161 10,000,000,000 11 B
2016-03 229 9,000,000,000 Source: Docker Blog /
2016-04 180 8,000,000,000
2016-05 374
2016.06 309 7,000,000,000
2016-07 331 6,000,000,000 B
2016-08 221 5,000,000,000 /
2016-09 362 /
201610 551 4,000,000,000
2016-11 632 3,000,000,000
2016-12 919 2,000,000,000 l B
2017-01 736
2017.02 877 1,000,000,000 IM
2017-03 1177
2017-04 1130 2013 2014 2015 2016 2017

Contrasting Containers with VMs

App A

App B
JAYe] e AN App B

Challenges created by a microservice approach

Netflix Microservice “Death Star” Model

* Explosion in the number of
service instances to manage

 Extreme need for reliable
deployment

* Dramatically different debugging
and monitoring models

* Increased pressure on networks
to exchange procedure calls

Modern RPC

What is modern RPC?
* Cross platform

* Polyglot
* Evolvable
* Fast

Monoliths are internaIIY1 composed of
modules which call each other through
exposed functions/methods

This model is easy to translate to RPC
style microservices

The largest Internet Scale firms have all
adopted Modern RPC solutions internally
to improve service performance

* Google — ProtoBuf/Stubby
(now moving from Stubby to gRPC)

* Facebook — Thrift
* Twitter — Thrift/Scrooge/Finagle

- Bruce Jay Nelson is credited with inventing the term RPC in early ARPANET documents
A The idea of treating network operations as procedure calls

- Xerox Courier possibly the first commercial RPC system

- Sun RPC (now Open Network Computing [ONC+] RPC, RFC 5531)

- CORBA — Common Object Request Broker Architecture
A The CORBA specification defines an ORB through which an application interacts with objects

Applications typically initialize the ORB and accesses an internal Object Adapter, which maintains things
like reference counting, object (and reference) instantiation policies, and object lifetime policies

General Inter-ORB Protocol (GIOP) is the abstract protocol by which object request brokers (ORBs)
communicate

Internet InterORB Protocol (IIOP) is an implementation of the GIOP for use over the Internet, and
provides a mapping between GIOP messages and the TCP/IP layer
- DCE RPC — An open (designed by committee) RPC solution integrated with the
Distributed Computing Environment
A Packaged with a distributed file system, network information system and other platform elements

- MS RPC (a flavor of DCE RPC and the basis for DCOM)

- Java RMI — a Java API that performs the object-oriented equivalent of remote
procedure calls (RPC), with support for direct transfer of serialized Java objects and distributed
garbage collection

A RMI-IIOP implements the RMI interface over CORBA
A Third party RMI implementations and wrappers are prevalent (e.g. Spring RMI)

- SOAP (Simple Object Access Protocol) specifies a way to perform RPC using XML over
HTTP or Simple Mail Transfer Protocol (SMTP) for message negotiation and transmission

- Google Protocol Buffers — developed at Google to glue their servers together and
interoperate between their three official languages (C++/Java/Python, JavaScript and others
have since been added), used as a serialization scheme for custom RPC systems

- Apache Thrift — developed at Facebook to solve REST performance problems and to
glue their servers together across many languages

A The basis for Twitter Finagle, an important facet of the Twitter platform

- Apache Avro is a serialization framework designed to package the serialization schema
with the data serialized, packaged with Hadoop

- Google gRPC announced as an RPC framework operating over http/2 using protocol
buffers for serialization

- Google contributes gRPC to CNCF

> > >>r

Fast does not have to be hard

* To create an Apache
Thrift service, simply:
* Defineitin IDL

* Generate client stubs
in your choice of
languages

e Generate a server
stub and wire it to
your implementation

* Use a prebuilt
Apache Thrift server
shell to implement
the service

lkervice Sailstats {

double get sailor rating(1: string sailor_name)

double get team rating(1: string team name)

double get boat rating(1: 164 boat serial number)

list<string> get sailors_on team(1: string team name)

list<string> get sailors rated between(1: double min_rating,
2: double max_rating)

string get team captain(1: string team name)

}

C++ Wind Flow

Apache Thrift supplies all of the _
Dynamics Desktop App

components necessary to turn a set
of functions into a network based
microservice accessible from a
range of platforms and languages. Module

C++ SailStats

C++ SailStats
Module

o)
Node.js Code . Network 2
]

Isn't REST fast enough

* For public, widely consumed ' '
APIs, REST is very good, Service Performance Comparison
Ieveraglng the infrastructure of
the web 400

* For internal, high performance °*°
APls, REST, HTTP and JSON text 300

serialization can be slow and 250

there’s no “web infra” to 500
leverage

150

* The chart at right shows 100

seconds required for the same

client on the same computerto ~ *°

call the same local service 1Imm 0 B
times SOAP (JAX-WS), REST (JAX- Apache Thrift, Apache Thrift, Apache Thrift,
Tomcat /, HTFP RS/lersey2), Tomcat7, HTTP, TCP, 1SON TCP, Compact

* Each bar, uses a different tech XML Tomcat7,HTTP, JSON
stack to implement the service JSON

Thritt Language Comparison

Py->Py

Go->Py —
—

1551 | —
cp->1s. | —
ryacspyac [——
_____pa
—

JS->CPP

Thrift Local Loopback Test
Time to complete 1mm calls
Client (Cli->) to server (->Svr)

Py->CPP

Go->Go

CPP->Go

cPP>CPp [

o

200 400 600 800 1000 1200 1400

B 4 Clients H1 Client

1600

Pertormance in the backend

e Thrift

e Compact Protocol
 TCP

* gRPC
* ProtoBuf

* HTTP/2
* POST

gRPC/Thrift

gRPC Go

gRPC CPP

Thrift Go

Local Loopback Test
Time to complete 1mm calls
AP| Tech / Language

Thrift CPP

o

50 100 150 200 250 300

B 4 clients M1 client

350

Performance over the Internet

e The world wide web is the
largest distributed system
mankind has ever created

e Systems leveraging the protocols
of the Web (http/http/2) gain
many benefits at little or no cost

* Massively diStribUtEd caches Cliemt Commector (3 0 Client+Cache: § 0 Server Commector £ 00 ServerCache: (50
 Security appliances/technologies Figum 5-10. Prmoess View of 2 BEST-hased Amhitecture
+ Gateways A ot e i o e e 2 o e e
* Load balancers et Rt (2) e T ent 05 ot g i i . tacons 3 g sty
) Etc. WDHSMRWMMMm@mmEMWMMMwM@m
mmd&ﬁn&ihﬁmmﬁ;@ﬂﬂ&inﬁ&ﬁmﬂﬂkﬁkﬁm}uﬁcﬁm Raquﬁtfl::jjsmtdmﬂ].r
* REST and to some degree gRPC o s e of sy woassing WALS, an infoamsicn, survis 4 15 copeats S T Weh
and Thrift over http reap many e T sommomment 2 oniy A o St i D Lt ot et sonno
of these benefits the cverll process topalogy i anifct of ous view.

Fielding, 2000

namespace * OpenSourceProjects

https://github.com/RX-M/api-bench S e
: 116 year
: 116 month
: 116 day

Imagine We nGEd tO bUiId a c zgggﬁ;tngme //Proper project name

: string host //Hosting/control foundation or company

Service that traCkS : Date inception //Date project was open sourced

CreateResult {

OPEN SOURCE PROJECTS : L6 code

: string message

service Projects {
Project get(1: string name)
CreateResult create(1l: Project proj)

}

Jemao

Apache Thrift Take Away

* Key Features of Apache Thrift

Servers and Serialization —a complete serialization and
service solution in tree

Viodularity — pluggable serialization protocols and
transports with a range of provided implementations

Performance — light weight, scalable servers with fast
and efficient serialization

Reach — support for an impressive range of languages,
protocols and platforms

Rich IDL —language independent support for expressive
type and service abstractions

Flexibility — integrated type and service evolution
features

Community Driven Open Source — Apache Software
Foundation hosted and community managed

39% discount codabernethydz
Good at Manning.com

" MANNING

Thank you!

Questions?

L
E
\&

,_
—
b

