
Building High Performance Microservices
with Apache Thrift

Rethinking service APIs in a Cloud Native environment

Presenters

• Randy Abernethy
• ra@apache.org, randy.abernethy@rx-m.com

• Apache Thrift PMC

• CNCF member

• Partner RX-M Cloud Native Consulting

• Jens Geyer
• jensg@apache.org

• Apache Thrift PMC

• Senior Software Engineer at VSX Vogel Software GmbH

What is Cloud Native?

• Microservice Oriented

• Container Packaged

• Dynamically Orchestrated

Problems Cloud Native Solutions Can Solve:
• Extreme horizontal scale

• Increased server density

• Granular scaling

• Improved and explicit
modularity

• Support for aspirational
development processes
• CI/CD
• Agile development
• Everything as code

• Support for rapid adoption of
new technologies

• Time to Innovation/Market

Cloud Native Adoption
• Docker hub has seen 390,000% image pull growth since 2014

• K8s has seen 567% growth in commits in just over a year

• Google starts over 3,000 containers per second in their
Borg/Omega environment

• Pokemon Go: a 30,000 container cloud native application
running on Google Container Engine

Source: Docker Blog

Kubernetes Commits

Container BContainer A

Contrasting Containers with VMs

H/W H/W

Hypervisor OS

VM A VM B

OS OS

App A App B

App A App B

Challenges created by a microservice approach

• Explosion in the number of
service instances to manage

• Extreme need for reliable
deployment

• Dramatically different debugging
and monitoring models

• Increased pressure on networks
to exchange procedure calls

Netflix Microservice “Death Star” Model

Modern RPC

• What is modern RPC?
• Cross platform
• Polyglot
• Evolvable
• Fast

• Monoliths are internally composed of
modules which call each other through
exposed functions/methods

• This model is easy to translate to RPC
style microservices

• The largest Internet Scale firms have all
adopted Modern RPC solutions internally
to improve service performance
• Google – ProtoBuf/Stubby

(now moving from Stubby to gRPC)
• Facebook – Thrift
• Twitter – Thrift/Scrooge/Finagle

1980 - Bruce Jay Nelson is credited with inventing the term RPC in early ARPANET documents
Á The idea of treating network operations as procedure calls

1981 - Xerox Courier possibly the first commercial RPC system
1984 - Sun RPC (now Open Network Computing [ONC+] RPC, RFC 5531)
1991 - CORBA – Common Object Request Broker Architecture
Á The CORBA specification defines an ORB through which an application interacts with objects
Á Applications typically initialize the ORB and accesses an internal Object Adapter, which maintains things

like reference counting, object (and reference) instantiation policies, and object lifetime policies
Á General Inter-ORB Protocol (GIOP) is the abstract protocol by which object request brokers (ORBs)

communicate
Á Internet InterORB Protocol (IIOP) is an implementation of the GIOP for use over the Internet, and

provides a mapping between GIOP messages and the TCP/IP layer

1993 - DCE RPC – An open (designed by committee) RPC solution integrated with the
Distributed Computing Environment
Á Packaged with a distributed file system, network information system and other platform elements

1994 - MS RPC (a flavor of DCE RPC and the basis for DCOM)
1994 - Java RMI – a Java API that performs the object-oriented equivalent of remote
procedure calls (RPC), with support for direct transfer of serialized Java objects and distributed
garbage collection
Á RMI-IIOP implements the RMI interface over CORBA
Á Third party RMI implementations and wrappers are prevalent (e.g. Spring RMI)

1998 - SOAP (Simple Object Access Protocol) specifies a way to perform RPC using XML over
HTTP or Simple Mail Transfer Protocol (SMTP) for message negotiation and transmission
2001 - Google Protocol Buffers – developed at Google to glue their servers together and
interoperate between their three official languages (C++/Java/Python, JavaScript and others
have since been added), used as a serialization scheme for custom RPC systems
2006 - Apache Thrift – developed at Facebook to solve REST performance problems and to
glue their servers together across many languages
Á The basis for Twitter Finagle, an important facet of the Twitter platform

2008 - Apache Avro is a serialization framework designed to package the serialization schema
with the data serialized, packaged with Hadoop
2015 - Google gRPC announced as an RPC framework operating over http/2 using protocol
buffers for serialization
2017 - Google contributes gRPC to CNCF

Fast does not have to be hard

• To create an Apache
Thrift service, simply:
• Define it in IDL
• Generate client stubs

in your choice of
languages

• Generate a server
stub and wire it to
your implementation

• Use a prebuilt
Apache Thrift server
shell to implement
the service

Isn’t REST fast enough?

• For public, widely consumed
APIs, REST is very good,
leveraging the infrastructure of
the web

• For internal, high performance
APIs, REST, HTTP and JSON text
serialization can be slow and
there’s no “web infra” to
leverage

• The chart at right shows
seconds required for the same
client on the same computer to
call the same local service 1mm
times

• Each bar, uses a different tech
stack to implement the service

0 200 400 600 800 1000 1200 1400 1600

CPP->CPP

CPP->Go

Go->Go

Py->CPP

JS->CPP

Py->Go

PyAc->PyAc

CPP->JS

JS->JS

Py->Py

Go->Py

4 Clients 1 Client

Thrift Language Comparison

Thrift Local Loopback Test
Time to complete 1mm calls
Client (Cli->) to server (->Svr)

Performance in the backend

• Thrift
• Compact Protocol

• TCP

• gRPC
• ProtoBuf

• HTTP/2
• POST

0 50 100 150 200 250 300 350

Thrift CPP

Thrift Go

gRPC CPP

gRPC Go

gRPC/Thrift

4 clients 1 client

Local Loopback Test
Time to complete 1mm calls
API Tech / Language

Performance over the Internet

• The world wide web is the
largest distributed system
mankind has ever created

• Systems leveraging the protocols
of the Web (http/http/2) gain
many benefits at little or no cost
• Massively distributed caches
• Security appliances/technologies
• Gateways
• Load balancers
• Etc.

• REST and to some degree gRPC
and Thrift over http reap many
of these benefits

Fielding, 2000

Demo
Part I: Creating a Thrift microservice, containerizing it, orchestrating it

Part II: Evolving the service and rolling it out without breaking compatibility

Imagine we need to build a
service that tracks

OPEN SOURCE PROJECTS

https://github.com/RX-M/api-bench

Apache Thrift Take Away

• Key Features of Apache Thrift
• Servers and Serialization – a complete serialization and

service solution in tree
• Modularity – pluggable serialization protocols and

transports with a range of provided implementations
• Performance – light weight, scalable servers with fast

and efficient serialization
• Reach – support for an impressive range of languages,

protocols and platforms
• Rich IDL – language independent support for expressive

type and service abstractions
• Flexibility – integrated type and service evolution

features
• Community Driven Open Source – Apache Software

Foundation hosted and community managed

39% discount code: abernethydz
Good at Manning.com

Thank you!

Questions?

